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Direct calculation of accurate Siegert eigenv4ues 
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Casilla de Correo 962. 19W La Plata, Argentina 

Received 21 November 1994 

Abstrad. The roofs of the &&el determinant built with the Taylor coefficients of the 
regularized logarithmic derivative of the eigenfvnction give bath the bound-state and Siegert 
eigenvalues (resonances) of separable quantum-mechanical systems. We obtain accurdte 
positions and widths for the resonances of some commonly chosen test examples. 

1. Introduction 

The Rimat-Pad6 method gives an accurate rational approximation of the regularized 
logarithmic derivative of the eigenfuncfion and a sound quantization condition for the 
eigenvalues [l-71. The quantization condition states that the roots of a Hankel determinant 
constructed with the Taylor coefficients of that function are close approximations to the 
eigenvalues. Extensive numerical calculation has shown that the accuracy increases rapidly 
with the dimension of the determinant and, consequently, the Riccati-Pad6 method proves 
useful in obtaining eigenvalues and eigenfunctions of one-dimensional and central-field 
models 11-71. Moreover, from the roots of the Hankel determinants one also obtains either 
exact or highly accurate weak- and strong-coupling expansions [5,71. 

In this paper we show that the quantization condition given by the Riccati-Pad6 
approach is also valid for Siegert eigenvalues. Siegert states are solutions of the time 
independent Schrijdinger equation that behave asymptotically as outgoing waves 181. The 
real and imaginary parts of the corresponding complex eigenvalues are, respectively, the 
positions and widths of the scattering resonances in, for example, collisional ionization and 
detachment processes. 

In section 2 we outline the method and derive the quantization condition. In section 3 
we calculate the lowest Siegert eigenvalue of an anharmonic oscillator with a negative 
coupling constant and estimate the velocity of convergence of the method. In section 4 
we consider simple one-dimensional and central-field non-polynomial potentials that are 
commonly chose% to be test examples in the development of methods for the calculation 
of scattering resonances. Finally, in section 5 we discuss some of the advantages and 
disadvantages of the Riccati-Pad6 approach and outline its prospective generalization. 

2. The Riccati-Pad6 method 

Choosing convenient units, one can reduce the time-independent Schrodinger equation for 
many simple quantum-mechanical models to 

E - V ( X )  - - 
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where E is the energy of the particle, V ( x )  the potential energy function and, for a one 
dimensional motion, 1(1+ 1) = 0 and -CO c x < CO. If V ( x )  = V(-x) then 1 = -1 and 
1 = 0 give rise to the even and odd states respectively. For central-field models 0 < x < CO 

and i = 0,1, .  . . is the angular-momentum quantum number. If, in this case, V ( x )  behaves 
as V-z/x2, V-2 =- -1/4, close to the origin, then we add a term to the centrifugal term 
which results in a real value of I (that is to say we substitute L(L + 1) = 1(1 + 1) + V-z 
for 1(1 + 1) in (I)). 

Here, we assume that the potential-energy function of the one-dimensional problem is 
parity invariant and regular at the origin so that it can be expanded in a Taylor series as 

W 

V ( x )  = V , P .  
j=Q 

In the case of a cen&al-field problem we suppose that 

m 
V ( x )  = V j d .  

j=-1 
(3) 

The Riccati-Pad6 method is based on arational approximation to the regularized logarithmic 
derivative of the eigenfunction: 

which is a solution of the Riccati equation 

The term ( l + l ) / x  removes the singularity of W'/ Y at the origin so that f ( x )  is regular there 
and can be expanded in a Taylor series around that point. In the case of a parity-invariant 
potential we have 

with cbefficients that follow from the recurrence relation 

n=0,1,  .... (7) 
1 

f n = 2 n + 2 1 + 3  

Alternatively, for a central-field model the series is of the form 
I 

j=-1 

and we obtain the coefficients from 
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where the s u m  does not appear when n = -1. In both cases the coefficients &. are 
polynomial functions of E which is the only unknown parameter of the theory. For an 
asymmetric one-dimensional potential both the energy and one of the Taylor coefficients 
remain unknown [3] .  For simplicity we do not discuss such a case here. 

To take into account its poles and zeros we write f ( x )  as a Pad6 approximant 
x [ N  + d / N ] ( x * )  d 2 0 for a parifpinvariant potential, and as f-1 + x [ N  + d / N ] ( x )  
for a central-field model. Such rational approximations account for the first 2N + d + 1 
coefficients fi exactly (2N +d + 2 if f-r # 0 in the central-field case). If we also require 
that they produce the coefficient finM+l then the energy has to be a root of the Hankel 
determinant 

(10) 

IfD+d fD+$+l ... fZD+d-l I 
which, for convenience, we express in terms of its dimension D = N + 1. F'revious 
calculations of bound-state energies proved that the roots of (10) rapidly converge towards 
the actual eigenvalues as D increases. The accuracy also depends on d [2]. but for brevity 
we restrict ourselves to d = 0 throughout this paper. 

One of the surprising features of the Riccati-Pad6 method is that the derivation of the 
quantization condition (IO) does not, apparently, take into account the asymptotic form 
of the eigenfunction. Recent numerical calculations have shown that as D increases, the 
approximate f ( x )  approaches close to the exact regularized logarithmic derivative of the 
eigenfunction in an increasingly wider interval about the origin, even though it may not have 
the appropriate form in the limit 1x1 + 00 171. If one is only interested in the energies, 
then the problem reduces to the calculation of the roots of a polynomial. 

3. The anharmonic oscillator 

As a first illustrative example we consider the anharmonic potential-energy function 

V ( x )  = x =  + hx4 (11) 

in one'dimension. There are bound states for 1 2 0 only and a continuum spectrum 
otherwise. Here, we consider the Siegert states embedded in the continuum for A -= 0 that 
have been calculated from the perturbation series by means of numerical integation and 
through the complex-coordinate method [9-121. The semi-classical WKB method yields [I31 

for the imaginary part of the lowest resonance considered here. This expression is exact in 
the l i t  h + 0-. 

Since the Hankel determinant is a polynomial with real coefficients, it exhibits pairs 
of complex-conjugate roots in agreement with the fact that both E and E* are eigenvalues 
for real negative values of h. However, only the roots with negative imaginary parts 
describe decaying states or resonances, and through this choice one is taking into account 
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the asymptotic form of the eigenfunction. For comparison purposes we select Im(E) > 0 
for the time being. 

The number of roots in the neighbourhood of the actual resonances increases rapidly with 
the dimension of the determinant. For thii reason, it is convenient to begin with determinants 
of small dimension, which do not have many roots, and increase the dimension by unit steps 
looking for the roots of Hi in the neighbourhood of the roots of Hi-, previously calculated. 
This is the simplest way of selecting the best root for every value of D. 

To quantify the convergence velocity of the Riccati-Pad6 method we calculate 
log I(Re[E(D)] - Re[E(D-l)])/Re[E(D)JI and log I[J~I[E(~)] - I~I[E(~- ')]J/I~[E(~)]I for 
increasing values of D and choose two sufficiently different values of h to determine the 
effect of its magnitude. Figure 1 shows that the resonance position converges slightly faster 
for A = -0.05 than for A = -1, and figure 2 reveals that the opposite is true for the 
resonance width. The reason for the former result is that as [AI decreases the potential 
(11) becomes increasingly harmonic and the Riccati-Pad6 method is exact when h = 0. To 
understand the latter, notice that since no root of the Hankel determinant exhibits an essential 
singularity like that in (12), then the smaller the value of -A the larger the dimension D 
required for a given accuracy. A concomitant effect is that the imaginary part of a resonance 
may not appear at low dimensions if -h is small enough (cf figure 2). Except for extremely 
small values of -A, the calculated resonance width is sufficiently accurate for most practical 
purposes. An important conclusion drawn here is that, apparently, the proper root of the 
Hankel determinant tends towards the actual resonance as D increases, at least for the values 
of h considered here. A sufficiently accurate calculation of h ( E )  for values of A closer 
to zero requires Hankel determinants of a much larger dimension; the application of the 
method soon becomes impracticable. However, even in such an unfavourable situation one 
still obtains accurate resonance positions from determinants of moderate dimension. 

UN) i-u4Kl - A=-0.05 ..._ 
- - .  

.. .. h;.-1 
-. --. 

. ,k-, -----------.. 
-.. 

h=-O.05 * * -__  - -. -. 
-1 -' x 7  (I 8 N v  3 4 5 3 4 

Fi- 1. Rate of convergence of the Rima& Figwe 2. 
Pad6 method expressed as L(D) = 10gl[Re[E(~)] - 
Re[E'D-')]l/Re[E~D)ll for the real part of the lowest 
Siegert eigenvalue of the anharmonic oscillator with 
V ( x )  = 2 c Ax4. 

Rate of convergence of the R i d -  
Pad6 method expressed as L(D) = l~glUm[E(~)]  - 
Im[EcD-')I)/Im[E(D)II for the imapinq pm of the 
lowest Siegert eigenvalue of the anharmonic oscillator 
with V ( X )  = 1 2  + b4. 

Table 1 shows the lowest resonance for some values of A estimated from the roots of 
Hi for successive values of D. For comparison purposes, in the last column we give the 
ratio [lo] 

E = Im(E)/ I ~ ( E ~ * ) .  (13) 
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Table 1. h w e s t  Siegert eigenvalue of lhe anharmonic oscillator with the potential V ( x )  = 
x2 + Ax4 obtained from determinants with dimension 12. 

k W E )  W E )  E 

-1 0.74774783356277945 0.609 980 500 214535 23 0.52645414737032419 
-0.5 0.722917966 899 020 1375 0.351 510988 8374895709 0.417828599 051 747731 I 
-0.2 0.794881 259641 709 1472 0.0894122950664493736 0.496678611 683594393 
-0.1 0.900672 904 092 015 025 0.006693280875800 130 0.736971241 8106441 
-0.05 0.958233636451 927729 0.000014564773 367893 0.891 039 11767432 
-0.04 0.9674512352369715399 0.5965307360513 x 10“ 0.9149958645171 

0.95914031 -0.02 0,9844276697652554008 0.51093949 x lo-” 

. Present results are more accurate than those obtained with either perturbative or non- 
perturbative methods [9-12]. 

By analogy to the case of bound states one expects an expansion of the form 

to be valid for resonancw when ]AI + 00; where the coefficient eo is a resonance -of 
V(x) = -x4. Following a procedure that proved to be successful for bound states [5,7], 
we obtain 

E(];)  Z ~h~’~3[0.530181045242091450 

- 0.918 3OO507569275964i + (0.181 011 324 + 0.313520811i)lh1-2~3 

+ 0.034 5102631hl-4/3] (15) 

-for the lowest resonance. To the best of our knowledge this expansion has not been reported 
before. In figure 3 we compare this approximate expansion with the converged roots of 
the Hankel determinants. The accuracy of the calculated resonances for h = -5, -10 and 
-100 is similar to that for h = -1. For clarity in figure 3 we have chosen Im(E) i 0. 

4. Other simple models 

The anharmonic potential-energy function just considered is a polynomial of sufficiently 
small degree so that the Hankel determinants take all of its terms completely into account. 
In order to know the effect of a truncation of the Taylor expansion of the potential-energy 
function on the calculated resonances we concentrate on non-polynomial examples. The 
first example is the onedimensional model potential 

(16) 

selected in numerical tests of the complex-coordinate method because the Schrijdinger 
equation exhibits predissociating resonances, analogous to those encountered in diatomic 
molecules 114,151. Table 2 shows the bound state and the two lowest resonances for 
J = 0.8 and A = 0.1. Based only on a convergence criterion, present results are more 
accurate than those obtained by the complex-coordinate method within either the Rayleigh- 
Ritz variational method, the Numerov algorithm or Milne’s complex energy quantization 
condition [14-161. 

V(x) = (x2 - 23) exp(-Ax2) + 25 J ,  A > 0 
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Figure 3. Large-A expansion for the lowest resonance supported by V ( x )  = x2 (full line) 
compared with the real (squares) and imapircaq (diamonds) pm of the converged mots of the 
Hankel determinants. 

Table 2 Lowest bound-state energy and ~ s o n a n c a  of the one-dimensional model with potential- 
enexgyfunctionV(x)=(x2-2J)exp(-h2)+2JforJ=0.8andA=0.1 fromadeterminant 
of dimension 11. 

I F - .  
-1 1.004080720 

0 2.841941 891429-0.000116530562i 
- I  4.2543941551 -0.0308946255i 

Our second example is a quantum-mechanical model with the central-field potential 

V ( X )  = ~.~Ox*exp(-h) x > 0, vO, A > o (17) 
which has proved suitable for numerical tests of methods developed for the calculation 
of scattering resonances in auto-ionizing processes such as collisional ionization and 
detachment [16-22]. Although the convergence of the method is considerably slower for this 
example, our estimate of the lowest s-wave scattering resonance E = 6.852780-0.025 5491 
(D = 15) for VO = 7.5 and A = 1, agreeswith those obtained by other approaches [16-221. 

In the case of the repulsive potential 

V ( x )  = Va exp(-Ax) x > 0, Va, A > 0 (18) 

we obtain more than one acceptable root for some values of D, even when following 
the stepwise procedure outlined before. In addition, determinants of different dimension 
exhibit common roots which makes a judicious choice even more difficult. Our estimates 
Ea = -2.421 905 43 - 7.280683 90i and E1 = -14.539393 - 3.901 2108i for VO = 9 and 
A = 2 are slightly different from the results obtained by means of an analytical treatment 
and using a matching technique combined with complex rotation [22,23]. 

The results obtained in this section suggest that the truncation of the Taylor expansion 
for the potential-energy function does not seriously affect the rate of convergence of the 
method. 
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5. Further comments and conclusions 

Present results clearly support the assumption that the roots of the Hankel determinant, 
constructed with the Taylor coefficients of the regularized logarithmic derivative of the 
eigenfunction, give the resonances or Siegert eigenvalues of the system in addition to the 
bound-state energies. A practical advantage of the Riccati-Pad6 method is that the roots of 
the Hankel determinant converge rapidly towards the actual eigenvalues so that our results 
may, in some cases, be more accurate than those obtained by means of the well-established 
methods and, in addition, we can easily improve our results by increasing the dimension of 
the Hankel determinant. Moreover, the Riccati-Pad6 method is suitable for the application 
of computer algebra which enables one to obtain analytical expressions for the Hankel 
determinant and its derivative with respect to the energy. In this way, one easily calculates 
the roots by means of the Newton-Raphson method, or any other algorithm, with the almost 
unlimited precision provided by most symbolic processors. In addition to this, analytical 
expressions for the Hankel determinants facilitate the derivation of power-series expansions 
such as (14) that would be difficult to obtain otherwise. 

The Riccati-Pad6 method also gives accurate eigenfunctions in a coordinate interval 
wide enough for the calculation of matrix elements 171. Such a calculation bas to be carried 
out numerically, and the fact that f(x) does not exhibit the correct asymptotic behaviour 
is not a hindrance because one stops the numerical integration when IY(x)l is sufficiently 
small. 

One disadvantage of the present approach is that the dimension of the Hankel 
determinant needed to obtain a given precision increases rapidly with the number of nodes 
of the eigenfunction. This fact makes the calculation of excited bound-state energies and 
resonances labelled by large quantum numbers difficult. The application of supersymmetric 
quantum mechanics partly overcomes this undesirable feature [4]. 

Another difficulty, already discussed, is the occurrence of many roots in the Hankel 
determinants. For clarity, we classify the roots into physical and unphysical, and the latter 
are further classified into spurious and meaningful. Physical roots converge towards the 
eigenvalues of the chosen problem. One may arrange them in different sequences but it is 
convenient just to select the best one as indicated before. Spurious roots are those that do 
not appear to belong to any convergent sequence and, therefore, they are easily singled out. 
Finally, roots that form convergent sequences with limits that one recognizes as eigenvalues 
of a different problem from the one chosen are called unphysical meaningful mots. Since 
the present method is based on the Taylor expansion of the logarithmic derivative of the 
eigenfunction, it is valid for complex values of the coordinate and, consequently, may apply 
to a set of models obtained by rotation of the coordinate in the complex plane. Consider the 
simple model given by H = -d2/dz2fz4 as an illustrative example. When z = x we obtain 
the pure quartic oscillator; however, when z = x exp(ia/2) we have H = -(-dz/dx2 -x4) .  
For this reason, together with the fact that there is no explicit selection of the asymptotic 
form of the eigenfunctions, a Hankel determinant for the pure quartic oscillator also exhibits 
the complex resonances of H = -d2/dx2 - x4 times minus unity. A similar situation is 
encountered in the other models considered above. 

It is easy to single out the actual bound states of a problem from the many roots 
of a Hankel determinant because their approximate location is predictable. Some of the 
resonances, however, pose a somewhat more difficult problem. For example, in the case 
of the potential-energy function (17) we also found a sequence of roots rapidly converging 
towards E = -11.6696285625 - 4.380265522i. Although the resonances of that model 
with negative real parts have been investigated [16], the resonance indicated has not been 
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obtained before and it is not easy to decide whether it corresponds to that potential or to 
another related by complex rotation of the coordinates. When looking for a more accurate 
bound-state energy supported by the potential (16), we found that the Newton-Raphson 
algorithm oscillated in a suspicious way and so we hied a complex statting point; as a 
result we obtained E = 1.004 080726301 57 -0.293 47 x To verify if this resonance 
close to the bound state is just a product of the particular Hankel determinants considered, 
we calculated the roots of a sequence of determinants HA obtaining exactly the same result. 
An accurate and careful independent calculation is necessary to establish the existence of 
a complex pole of the scattering matrix in a region where one expects only bound states. 
Such an eigenvalue would be as dficult to interpret as the resonances with negative real 
parts supported by the potential-energy function (17) [16]. 

It follows from the discussion above that the Riccati-Pad6 method should be applied with 
great care to the calculation of resonances. However, we deem it to be a useful alternative 
procedure to verify and even to improve the results obtained from other approaches. 

At present, it is not clear to us how to construct the rational approximation to the 
logarithmic derivative of the eigenfunction for non-separable problems. One possibility is 
to abandon the quantization condition (10) and minimize the variance of the local energy 
HY/Y, H being the Hamiltonian operator, over a set of conveniently chosen coordinate 
values [24]. One may write the trial function IIr as exp(-F), where F is a rational function 
with adjustable coefficients to be determined according to the criterion just mentioned. This 
course of action is suggested by the fact that the local energy for simple one-dimensional 
models proves to be remarkably constant on large intervals of the coordinate when one uses 
the Riccati-Pad6 method in the usual way [I. A second approach is based on a rational 
approximation to the solution of the matrix Riccati equation [Z]. This procedure leads 
to Hankel determinants of a much larger dimension than those treated here and exhibits 
the additional disadvantage that the rate of convergence may have a strong dependence on 
the basis used in the matrix representation of the Schrodinger equation. We are presently 
investigating such alternative approaches. 
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